Hill, R. J. \& Jones, J. B. (1976). Am. Miner. 61, 987-995.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kumbasar, I. \& Finney, J. J. (1968). Miner. Mag. J. Miner. Soc. 36. 621-624.
Mori, H. \& Ito, T. (1950). Acta Cryst. 3, 1-6.
Riffel, H., Keller, P. \& Hess, H. (1980). Tschermaks Miner. Petrogr. Mitt. 27, 187-199.
Riou, A., Cudennec, Y. \& Gerault, Y. (1986). Rev. Chim. Miner. 23, 810-818.
Riou, A., Cudennec, Y. \& Gerault, Y. (1989). Acta Cryst. 45, 14121413.

Sheldrick, G. M. (1995). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS User Guide. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT Area-Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stephens, J. S. \& Calvo, C. (1967). Can. J. Chem. 45, 2303-2312.
Takagi, S., Mathew, M. \& Brown, W. E. (1986). Am. Miner. 71. 1229-1233.

Acta Cryst. (1997). C53, 1000-1003

Mercury(II) Diphosphate, $\mathbf{H g}_{2} \mathbf{P}_{2} \mathbf{O}_{7}$

Matthas Well and Robert Glaum

Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, D-35392
Gießen, Germany. E-mail: robert.glaum@anorg.chemie.unigiessen.de
(Received 4 November 1996; accepted 7 March 1997)

Abstract

Mercury(II) diphosphate, $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, belongs to the $M_{2} X_{2} \mathrm{O}_{7}$ family of compounds with dichromate-type crystal structures and is isotypic with $\mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The structure consists of alternating layers built from $\mathrm{P}_{2} \mathrm{O}_{7}$ groups and highly distorted HgO_{6} polyhedra with bond distances in the ranges $2.120(6) \leq d\left(\mathrm{HglO}_{8}\right)$ $\leq 2.793(7) \AA$ and $2.208(6) \leq d\left(\mathrm{Hg}_{2} \mathrm{O}_{6}\right) \leq 2.509$ (6) \AA. The diphosphate anion has a $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridging angle of $133.4(4)^{\circ}$. The average P - O bond length is $1.604 \AA$ for bridging and 1.524 A for terminal bonds. [$\mathrm{Hgl}_{2} \mathrm{O}_{10}$] and $\left[\mathrm{Hg}_{2} \mathrm{O}_{10}\right]$ form chains running along [110] through edge-sharing dimers. These chains link to form layers parallel to ($\overline{1} 10$) via common vertices.

Comment

Until now, in the system $\mathrm{Hg}-\mathrm{P}-\mathrm{O}$ only the structure of the mercury(II) orthophosphate, $\mathrm{Hg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, has been refined from single-crystal data (Aurivillius \& Nilsson, 1975). For $\mathrm{Hg}\left(\mathrm{PO}_{3}\right)_{2}$, isotypism with the corresponding cadmium phosphate was proved (Beucher \& Tordjman,
1968) by comparison of the X-ray powder diffraction patterns. Although the diphosphate $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ has been known for a long time (Schwarzenberg, 1848), no crystallographic information for it has been published so far. Preliminary investigation of the X-ray powder pattern of $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ showed it to be isotypic with $\mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Weil, 1997), the structure of which has been refined previously (Calvo \& Au, 1969). During our studies on the thermal behaviour of mercury(II) phosphates, we obtained crystals of $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ suitable for X -ray investigations. Because of the particular crystal chemistry of Hg^{2+} with its d^{10} electronic configuration, refinement of the structure seemed appropriate. Additional interest in a detailed structural study arises from the relationship of dichromate-type $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Brown \& Calvo, 1970; Clark \& Morley, 1976; Nord \& Kierkegaard, 1980) with diphosphates of divalent $3 d$ metals with thortveitite-type structures.

The crystal structure comprises alternating layers of HgO_{6} polyhedra and diphosphate groups parallel to (110) (Fig. 1). The two independent Hg^{2+} ions form dimers, $\left[\mathrm{Hg}_{2} \mathrm{O}_{10}\right]$ and $\left[\mathrm{Hg} 2_{2} \mathrm{O}_{10}\right]$, by edge sharing. The common edge is $\mathrm{O} 4-\mathrm{O} 4$ in the case of Hgl , and $\mathrm{O} 2-\mathrm{O} 2$ for Hg 2 (Fig. 2). The dimers are linked via common edges (O 2 and O 3) and vertices (O5) thus forming the layers. In contrast to the thortveitite-type structures, where adjacent metal-oxygen layers (e.g. $\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$; Stefanidis \& Nord, 1984) are joined only by diphosphate groups, additional contacts from one $[\mathrm{Hg}-$ O] layer to another via common vertices (O6) occur in $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Fig. 1).

The diphosphate anion (Fig. 3) displays an eclipsed conformation with a dihedral angle of 7.2° along $\mathrm{O} 4, \mathrm{P} 2, \mathrm{O} 1, \mathrm{P} 1$ and O 3 . The $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridging angle is $133.4(4)^{\circ}$. Both values agree with those generally observed for $\left[\mathrm{X}_{2} \mathrm{O}_{7}\right]$ anions in dichromate-type structures, where the eclipsed conformation is stabilized by chelate-type coordination to the two divalent cations. Bond lengths from the P atoms to the terminal and bridging O atoms are in the typical range observed for diphosphates of divalent cations $\left[d_{b}(\mathrm{P}-\mathrm{O})=1.596\right.$ (6) and $1.611(6) \AA, \bar{d}_{t}(\mathrm{P} 1-\mathrm{O})=1.528 \AA$ and $\bar{d}_{t}(\mathrm{P} 2-\mathrm{O})=$ $1.519 \AA$ A].

Hg 1 and Hg 2 are coordinated by six O atoms (Fig. 2), with the nearest 'non-bonding' O atom $3.177 \AA$ from Hg 1 and $3.280 \AA$ from Hg 2 . The $\left[{\left.\mathrm{Hg} 1 \mathrm{O}_{6}\right] \text { group can be }}^{\mathrm{A}}\right.$ described as a highly compressed octahedron ($2+4$ coordination) with two short axial bonds, $\bar{d}_{\mathrm{ax}}=2.132 \AA$, and four longer equatorial bonds, $\bar{d}_{\mathrm{eq}}=2.583 \AA$. The coordination around Hg 2 may be described as $(4+2)$ with $\bar{d}_{\text {eq }}=2.28 \AA$ and $\bar{d}_{\mathrm{ax}}=2.49 \AA$. The $\left[\mathrm{Hg} 2 \mathrm{O}_{6}\right]$ octahedron is less distorted than the $\left[\mathrm{Hg}_{1} \mathrm{O}_{6}\right]$ octahedron. The Hg O bond lengths found in $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ are in the same range as those found in $\mathrm{Hg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Aurivillius \& Nilsson, 1975) and HgSO_{4} (Aurivillius \& Stålhandske, 1980). The $\left[\mathrm{HgO}_{x}\right]$ polyhedra in mercury(II) orthophosphate have $\mathrm{Hg}-\mathrm{O}$ distances from 2.06 to $2.80 \AA$ (five- and

Fig. 1. (a) Projection of the $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ structure along the c axis. Schematic representation of diphosphate groups and $\left[\mathrm{HgO}_{6}\right]$ polyhedra in layers parallel to ($\overline{1} 10$). (b) Slice of the structure parallel to (II0) projected on (II0). Both plots were produced using ATOMS (Dowty, 1995).
sixfold coordination). In mercury(II) sulfate, the distances range from 2.22 to $2.90 \AA$ (eightfold coordination). The coordination polyhedra of Hg^{2+} observed in the title compound are in broad agreement with other [HgO_{x}] complexes reviewed by Wessels (1996). Bond length-bond strength considerations (Brese \& O'Keeffe, 1991) led to a coordination number (CN) of 6 for both Hg^{2+} ions. Taking all six $\mathrm{Hg}-\mathrm{O}$ contacts with $d(\mathrm{Hg}-\mathrm{O})<3.00 \AA$ into account gives valence sums of 1.88 and 2.01 for Hg 1 and Hg 2 , respectively. Calculations of the effective coordination number ECN, fol-

Fig. 2. ORTEPII (Johnson, 1976) plot of HglO_{6} and ${\mathrm{Hg} 2 \mathrm{O}_{6} \text {. }}_{\text {. }}$ (J) Displacement ellipsoids are drawn at the 85% probability level; distances are in A. Symmetry codes are as given in Table I.

Fig. 3. ORTEPII (Johnson, 1976) plot of the diphosphate group. Displacement ellipsoids are drawn at the 85% probability level; distances are in \AA. Symmetry codes are as given in Table \mathbb{I}.
lowing a concept described by Hoppe (1979), led to $\mathrm{ECN}(\mathrm{Hg} 1)=4.03$ and $\mathrm{ECN}(\mathrm{Hg} 2)=5.60$, thus showing an even larger difference in the bonding situation for the two independent Hg^{2+} ions. The Madelung part of the lattice energy (MAPLE) (Hoppe, 1995) calculated with the actual structural data for $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ differs by only 0.4% from the sum of the MAPLE values of the binary oxides HgO (Wyckoff, 1965) and $\mathrm{P}_{4} \mathrm{O}_{10}\left[\operatorname{MAPLE}\left(\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)=12531 \mathrm{kcal} \mathrm{mol}^{-1} ; 1 \mathrm{kcal}\right.$ $=4.184 \mathrm{~kJ}] . \operatorname{MAPLE}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$ was calculated as the difference $2 \times \operatorname{MAPLE}\left(\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}\right)-4 \times \operatorname{MAPLE}\left(\mathrm{Na}_{2} \mathrm{O}\right)$. Crystallographic data for $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ and $\mathrm{Na}_{2} \mathrm{O}$ were taken from the literature (Leung \& Calvo, 1972; Wyckoff, 1965).

The coordination numbers of the O atoms range from 2 to 4. The $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridging atom Ol has no additional coordination partner, differing from other dichromate-type structures with X^{n+} cations of lower charge (Clark \& Morley, 1976). For the terminal O atom, O7, twofold coordination is also observed, with relatively short $\mathrm{Hg}-\mathrm{O}$ and $\mathrm{P}-\mathrm{O}$ distances. Atoms O3, O4, O5 and O6 are three-coordinate, showing comparatively short bond distances to one Hg atom and longer distances to the other, as well as a $\mathrm{P}-\mathrm{O}$ bond. Only O 2 shows fourfold coordination ($1 \mathrm{P}+3 \mathrm{Hg}$) with a longer $\mathrm{Hgl}-\mathrm{O} 2$ bond of 2.793 (7) A.

Experimental

A powder of $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ was prepared by heating a solution of HgO (Merck, p.a.) in half-concentrated nitric acid with a small excess (ca 5\%) of phosphoric acid (Merck, 85\% pure). To remove water and remaining nitrogen oxides the residue was subsequently heated in a silica crucible in air to $693 \mathrm{~K}(4 \mathrm{~d})$. The product was white and microcrystalline. Similar experiments using $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ instead of phosphoric acid, following the procedure given in the literature for $\mathrm{Cd}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo \& $\mathrm{Au}, 1969$), led to yellowish powders presumably still containing small amounts of nitrogen. Single crystals suitable for X-ray investigations could be obtained by chemical vapour transport reactions in evacuated silica ampoules (e.g. $177 \mathrm{mg} \mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, temperature gradient $823-$ $773 \mathrm{~K}, 19 \mathrm{~d}$), adding $14 \mathrm{mg} \mathrm{PCl}_{5}$ per ampoule as a transport agent. The experiments led to the deposition of colourless plate-like crystals with an edge-length up to 2 mm in the cooler zone of the ampoule.

From temperature-dependent X-ray powder photographs, the melting point of the diphosphate was determined to be 933 (10) K, which is in agreement with the value given in the literature (Gmelin, 1969). These investigations also revealed two phase transitions, at $482(10)$ and 843 (10) K, which are accompanied by only slight changes in the diffraction pattern. The lattice constants for $\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ given below were derived from Guinier photographs using the program SOS (Soose, 1980).

Crystal data

$\mathrm{Hg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
$M_{r}=575.12$
Triclinic
$P \overline{1}$
$a=6.706(1) \AA$
$b=6.806(1) \AA$
$c=6.997(1) \AA$
$\alpha=100.73(2)^{\circ}$
$\beta=113.33(2)^{\circ}$
$\gamma=80.53$ (2) ${ }^{\circ}$
$V=286.65(7) \AA^{3}$
$Z=2$
$D_{x}=6.668 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens AED-2 diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
numerical (HABITUS;
Herrendorf, 1993)
$T_{\text {min }}=0.045, T_{\text {max }}=0.092$
3372 measured reflections
1686 independent reflections

Refinement

Refinement on . ${ }^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.066$
$S=1.091$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 35 reflections from a Guinier photograph
$\theta=6.94-21.42^{\circ}$
$\mu=54.036 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Irregular
$0.1 \times 0.1 \times 0.1 \mathrm{~mm}$
Colourless

1411 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.0492$
$\theta_{\text {max }}=30.02^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-9 \rightarrow 9$
3 standard reflections frequency: 120 min intensity decay: none
$\Delta \rho_{\text {max }}=2.41 \mathrm{e} \AA_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.36 \mathrm{e}^{\AA^{-3}}$
Extinction correction:
SHELXL93

1685 reflections

101 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0258 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.001$

Extinction coefficient: 0.0369 (12)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Hg - O 5	2.120 (6)	$\mathrm{Hg} 2-05^{\prime \prime}$	2.475 (7)
$\mathrm{Hgl}-\mathrm{O} 4$	2.148 (6)	$\mathrm{Hg} 2-\mathrm{O} 2^{11}$	2.509 (6)
$\mathrm{HgI}-\mathrm{O}^{\text {i }}$	2.463 (6)	$\mathrm{Hg} 2-\mathrm{Ol}^{-}$	3.280 (6)
$\mathrm{Hgl}-\mathrm{Ob}^{\text {i }}$	2.532 (7)	$\mathrm{Hg} 2-\mathrm{Pl}^{1}$	3.388 (2)
$\mathrm{Hg} 1-\mathrm{O}^{\text {i }}$	2.542 (6)	$\mathrm{Hg} 2-\mathrm{Hg} 2^{\text {¹ }}$	3.7431 (12)
$\mathrm{Hg1}-\mathrm{O}^{\prime \prime}$	2.793 (7)	$\mathrm{Pl}-\mathrm{O7}$	1.504 (7)
$\mathrm{HgI}-\mathrm{Pl}^{\text {m2 }}$	3.159 (2)	$\mathrm{PI}-\mathrm{O} 3$	1.515 (7)
$\mathrm{Hgl}-\mathrm{O} 7$	3.177 (7)	$\mathrm{Pl}-\mathrm{O5}^{\text {¹" }}$	1.566 (7)
$\mathrm{Hgl}-\mathrm{Hg} \mathrm{I}^{\prime}$	3.5975 (11)	$\mathrm{Pl}-\mathrm{Ol}^{\text {ii }}$	1.611 (6)
$\mathrm{Hg} 1-\mathrm{Hg} 2$	3.7979 (7)	$\mathrm{Pl}-\mathrm{P} 2^{\text {vi }}$	2.945 (3)
$\mathrm{Hg} 2-07{ }^{\prime \prime}$	2.208 (6)	$\mathrm{P} 2-\mathrm{O6}$	1.508 (7)
$\mathrm{Hg} 2-\mathrm{O} 3^{1}$	2.276 (7)	$\mathrm{P} 2-\mathrm{O} 2$	1.518 (6)
$\mathrm{Hg} 2-\mathrm{O} 6$	2.310 (7)	P2-04	1.530 (6)
$\mathrm{Hg} 2-\mathrm{O} 2{ }^{\text {ii }}$	2.324 (6)	$\mathrm{P} 2-\mathrm{O} 1$	1.596 (6)
$\mathrm{O} 5-\mathrm{Hg} 1-\mathrm{O} 4$	176.1 (2)	$\mathrm{O} 3^{1}-\mathrm{Hg} 2-\mathrm{O} 5^{\prime \prime}$	102.2 (2)
$\mathrm{O} 5-\mathrm{Hgl}-\mathrm{O4}^{1}$	99.4 (2)	$\mathrm{O} 6-\mathrm{Hg} 2-\mathrm{O}^{11}$	108.0 (2)
$\mathrm{O} 4-\mathrm{Hgl}-\mathrm{O}^{\text {i }}$	77.6 (2)	$\mathrm{O} 2^{\prime \prime \prime}-\mathrm{Hg} 2-\mathrm{OS}^{\text {I }}$	87.5 (2)
O5- $\mathrm{Hgl}-\mathrm{O6}^{\prime \prime}$	95.0 (2)	$\mathrm{O} 7{ }^{\prime \prime}-\mathrm{Hg} 2-02^{\prime \prime}$	89.8 (2)
$\mathrm{O} 4-\mathrm{Hgl}-\mathrm{O}^{\prime \prime}$	88.8 (2)	$\mathrm{O} 3^{1}-\mathrm{Hg} 2-\mathrm{O} 2^{\text {ii }}$	78.4 (2)
$\mathrm{O4}^{1}-\mathrm{Hgl}-\mathrm{O6}^{\text {i }}$	127.3 (2)	$\mathrm{O} 6-\mathrm{Hg} 2-\mathrm{O} 2^{\prime \prime}$	85.8 (2)
O5- $\mathrm{Hgl}-\mathrm{O3}^{\prime}$	99.6 (2)	$\mathrm{O} 2^{\text {¹] }}-\mathrm{Hg} 2-\mathrm{O} 2^{\prime \prime}$	78.6 (2)
$\mathrm{O} 4-\mathrm{Hgl}-\mathrm{O3}^{\text {i }}$	79.2 (2)	$\mathrm{O5}{ }^{\prime \prime}-\mathrm{Hg} 2-\mathrm{O} 2^{\prime \prime}$	166.0 (2)
$\mathrm{O}^{\prime}-\mathrm{Hgl}-\mathrm{O}{ }^{1}$	109.8 (2)	O7-Pl-03	114.3 (4)
$\mathrm{O6}^{11}-\mathrm{Hgl}-\mathrm{O}^{1}$	117.3 (2)	O7-P1-O5 ${ }^{\text {¹I }}$	113.5 (4)
$\mathrm{O} 5-\mathrm{HgI}-\mathrm{O}^{\text {ii }}$	78.6 (2)	$\mathrm{O} 3-\mathrm{Pl}-\mathrm{O}^{\text {vii }}$	110.9 (4)
$\mathrm{O} 4-\mathrm{Hgl}-\mathrm{O}^{\text {ii }}$	104.3 (2)	O7-P1-O1 ${ }^{\text {viui }}$	108.4 (4)
$\mathrm{O} 4^{i}-\mathrm{Hgl}-\mathrm{O}^{\text {in }}$	177.3 (2)	O3-Pl-O1 ${ }^{\text {viii }}$	103.8 (4)
$\mathrm{O6}^{\text {ii }}-\mathrm{Hg} 1-\mathrm{O}^{11}$	55.0 (2)	$\mathrm{O}{ }^{\text {viil }}-\mathrm{Pl}-\mathrm{Ol}^{\text {vili }}$	105.1 (4)
$\mathrm{O}^{3}-\mathrm{Hgl}-\mathrm{O}^{\prime \prime}{ }^{\prime \prime}$	69.0 (2)	O6-P2--O2	109.3 (4)
$\mathrm{O} 7^{\prime \prime}-\mathrm{Hg} 2-03^{\prime}$	167.5 (2)	O6-P2-O4	114.1 (4)
$\mathrm{O} 7^{\text {12 }}-\mathrm{Hg} 2-\mathrm{O} 6$	83.4 (2)	O2-P2-O4	113.8 (4)
$\mathrm{O3}^{1}-\mathrm{Hg} 2-\mathrm{O} 6$	91.8 (2)	O6-P2-O1	110.2 (4)
$\mathrm{O} 7^{\text {i }}-\mathrm{Hg} 2-\mathrm{O}^{\text {iii }}$	94.2 (2)	O2--P2-O1	108.0 (4)
$\mathrm{O} 3{ }^{1}-\mathrm{Hg} 2-\mathrm{O}^{\text {ini }}$	87.3 (2)	O4-P2-O1	101.0 (3)
$\mathrm{O} 6-\mathrm{Hg} 2-\mathrm{O} 2^{\text {in }}$	164.2 (2)	$\mathrm{P} 2-\mathrm{Ol}-\mathrm{Pl}{ }^{\prime \prime}$	133.4 (4)
O7 ${ }^{\text {i' }}-\mathrm{Hg} 2-5^{\text {i }}$	90.3 (2)		
$\mathrm{O} 4-\mathrm{P} 2-\mathrm{Ol}-\mathrm{Pl}^{\text {IN }}$	-177.0 (6)	O3-PI-O1 ${ }^{\text {dii] }}-\mathrm{P}^{\text {viii }}$	171.1 (6)

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-y, 1-z$; (iii) $x, y-1, z$; (iv) $x, y, 1+z ;$ (v) $1-x, 1-y, 2-z ;$ (vi) $-x,-y, 1-z ;$ (vii) $x, 1+y, z$; (viii) $x, y, z-1$.

The crystal shape was optimized by minimizing the internal R value of ψ-scan data for 16 selected reflections using the program HABITUS (Herrendorf, 1993). The habitus so derived was used for the numerical absorption correction.

Data collection: STADI4 (Stoe \& Cie, 1995). Cell refinement: STADI4. Data reduction: STADI4. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ATOMS (Dowty, 1995) and ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

We thank Mr G. Koch and Dr M. Serafin for the data collection and Dr W. Herrendorf for HABITUS calculations. This work has been supported by the Fonds der Chemischen Industrie.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DU1174). Services for accessing these data are described at the back of the journal.

References

Aurivillius, K. \& Nilsson, B. A. (1975). Z. Kristallogr. 141, 1-10.
Aurivillius, K. \& Stålhandske, C. (1980). Z. Kristallogr. 153, 121129.

Beucher, M. \& Tordjman, I. (1968). Bull. Soc. Fr. Mineral. Cristallogr. 91, 207-209.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. \& Calvo, C. (1970). J. Solid State Chem. 1, 173-179.
Calvo, C. \& Au, P. K. L. (1969). Can. J. Chem. 47, 3409-3416.
Clark, G. M. \& Morley, M. (1976). Chem. Soc. Rev. 5, 269-295.
Dowty, E. (1995). ATOMS for Windows. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Gmelin's Handbuch der anorganische Chemie (1969). 8th ed., Vol. 34, Part B4, Quecksilber, 1357f. Weinheim: Verlag Chemie.
Herrendorf, W. (1993). HABITUS. Programm zur Optimierung der Kristallgestalt für die numerische Absorptionskorrektur anhand geeigneter ψ-abgetasteter Reflexe. University of Karlsruhe, Germany.
Hoppe, R. (1979). Z. Kristallogr. 150, 23-52.

Hoppe, R. (1995). Z. Naturforsch. Teil A, 50, 555-567.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Leung, K. Y. \& Calvo, C. (1972). Can. J. Chem. 50, 2519-2526.
Nord, A. G. \& Kierkegaard, P. (1980). Chem. Scr. 15, 27-39.
Schwarzenberg, A. (1848). Liebigs Ann. Chem. 65, 133-163.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Soose, J. (1980). SOS. Programme zur Auswertung von GuinierAufnahmen. University of Gießen, Germany.
Stefanidis, T. \& Nord, A. G. (1984). Acta Cryst. C40, 1995-1999.
Stoe \& Cie (1995). STADI4. Data Collection Program for Windows. Version 1.04. Stoe \& Cie, Darmstadt, Germany.
Weil, M. (1997). Thesis. University of Gießen, Germany. In preparation.
Wessels, A. (1996). Darstellung und strukturelle Charakterisierung ternärer Quecksilberoxide. University of Münster, Germany.
Wyckoff, R. W. G. (1965). In Crystal Structures. Vol. 1, second edition. New York: John Wiley \& Sons.

